Parametric curves and their tangents

Conceptual questions

Question 1. In lecture, you saw that $x=\cos t, y=\sin t$ parametrizes a circle. Where is the center of the circle, and what is the circle's radius? What point on the circle corresponds to $t=0$? As t increases, is the circle traced clockwise or counterclockwise? How long does it take to trace out the circle exactly once?

Then answer the same questions for these other circles:

- $x=3 \sin t, y=3 \cos t$
- $x=\cos (2 t), y=\sin (2 t)$
- $x=4+\cos t, y=-3+\sin t$

Question 2. Beware: the following parametric curves are not circles. (What are they?)

- $x=2 \cos t, y=5 \sin t$
- $x=\sin t, y=\cos (2 t)$. (Hint: use the double angle formula to find a Cartesian equation.)

Question 3. Suppose that a parametric curve $x=f(t), y=$ $g(t)$ satisfies $g^{\prime}(3)=0$. What can you conclude (if anything) about the tangent to the curve at $t=3$?

Computations

Problem 1. This is a further exploration of some ideas from Question 1, so that you can better understand how to transform shapes algebraically. Let C be the curve described by the equation $x^{2}+y^{2}=5$. If we take C and
(1) shift it by 2 units in the positive y direction (i.e. upwards),
(2) and then stretch it by a factor of 3 in the x direction (i.e. horizontally),
what Cartesian equation describes the resulting shape?
Next, come up with a parametrization $x=f(t), y=g(t)$ for the starting shape C, and then a parametrization for the shape obtained after applying the transformations.
Problem 2. Find a Cartesian equation for the parametric curve $x=t^{3}+t, y=t^{2}+2$. Hint: compute x^{2}.
Problem 3. There are two points on the curve

$$
x=2 t^{2}, y=t-t^{2},-\infty<t<\infty
$$

where the tangent line passes through the point $(10,-2)$. Find these two points.

